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Abstract 1. Motivation 

I present the results of an czperiment in retrofitting 
objects into an elisting system. I describe a tech- 
nology, based on automatic redefinition of ezisting 
functions, that allowed alternative implementations of 
the fundamental data types of the KEflM knowlcdge- 
based system building tool. This technology G appli- 
cable in environments where the system’s procedures 
can be subject to programmatic manipulation. It 
allows the retrofitting of objects into the implemen- 
tations of other eziating systems. The experience 
of retrofitting objects into KEE provides insight into 
the issues of the interaction of semantic classes and 
data representation and granularity in object-based 
systems.’ 
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The KEE system is a tool for building knowledge- 
based systems [l]. KEE integrates several AI problem- 
solving paradigms, including frames, inheritance, pro- 
duction rules, access-oriented programming (demons), 
object-oriented programming, multiple-worlds, and 
truth maintenance, with facilities for querying, alter- 
ing, and displaying the resulting structures.’ The 
primary representational object in KEE is the unit. 
For example, we could represent Clyde the elephant 
as a Clyde unit. Units exist in a (multiple-parent) 
hierarchy, with both member and subclass links. For 
example, Clyde might be a member of the classes 
of Indian.Elephants and Circus .Elephants, them- 
selves subclasses of Elephants. Relations are ex- 
pressed as slots on units. For example, if the Color slot 
on Clyde has value Pink, then (one of) Clyde’s colors 
is pink. KEE has two kinds of slots, own slots that 
describe properties of the object itself, and member 
slots for the properties of a class. Thus, Color on 

’ While there are several general insights gained from this 
research, the fiber of the work is heavily interwoven with its 
environment-the KEE system. KEE haa been both the target 
and the tool; it will be diWcult to understand this presentation 
without a few KEE concepts. The reader will therefore forgive 
me if I begin with a short overview of KEE. We should also note 
that the comments in this document about the implementation 
of the KEE system refer to version 2.1 of that system; some of 
the results of this research have been incorporated in the KEE 
system 3.0 release. KEE is a trademark of IntelliCorp. 
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Clyde is an own slot, while Color on Elephants, a 
member slot. Member slots inherit to member slots 
in subclasses and to own slots in elements. The 
particular form of the inheritance is controlled by 
the inheritance role of the slot (one of the facets 
that can be used to annotate slots). One of the 
representational tricks that’s done with KEE is to 
place functions as the values of slots, allowing the user 
to perform object-oriented programming by sending 
messages to these units indexed by these slot names. 
The method inheritance role performs a simplified 
Flavors mixins [2], allowing assembly of methods from 
parts (befores, after3 and wrappers). 

the KEE system that ‘user data type z,” ‘integers 
between 100 and 1000,” %trings,” “lists whose car 
is the atom banana” and ‘Yiles” are each possible 
data structures for units. Of course, we also have 
to (and want to) tell the system what it’s supposed 
to do when someone asks for the value of the fruit 
slot of the string-unit “Lisa loves apple juice. ‘I 
Accomplishing these goals has the further by-product 
that we may be able to impose the KEE system on 
already existing programs-for example, adding KEE 
to an existing CAD system and then using,it to reason 
about the devices being created. 

Thus, the KEE system is a tool for, among 
other things, object-oriented programming. However, 
while KEE supports object-oriented programming, 
KEE itself is built using classical function calls and 
record-structured data.3 In selecting these functions 
and data structures, the KEE system’s designers 
optimised the system for representing, accessing, and 
dynamically updating a large variety of information 
about relatively few things. That is, users can 
dynamically create and delete slots, specify constraints 
on the number and type of values a slot can have, 
define new inheritance mechanisms, attach active val- 
ues, etc. To support that functionality, units are 
non-trivial structures-they are large, require unique 
names, are sequentially stored in several places, and 
so. forth. Effectively, the current KEE system im- 
plementation trades space (and, to a lesser extent, 
time) for generality and expressive ability.4 This is 
not because the KEE system is poorly implemented- 
units are powerful, general structures that perform 
their tasks efficiently. But when a particular kind 
of unit always has a specific set of slots, or the 
values of a slot are never inherited, coerced, or 
mutilated by demons, the user is paying a significant 
storage and execution-time penalty for using the KEE 
system. 

In the above discussion, we have glibly spoken of 
treating arbitrary data structures as ‘units.” But like 
most systems, KEE grew like Topsy, without formal 
specifications. Thus, when we ask, “What exactly 
is a unit?’ we conclude that a unit is something 
that does unit-like things when the unit functions are 
applied to it. For example, after doing (put .valuee 
unit slot values)5 the result of (get .values unit 
slot) is values. Lacking a more formal specification, 
we assert that the unit functions are the (approxi- 
mately) 135 functions on units and slots defined in 
the KEE system users manual. We call the origi- 
nal KEE system implementation of units and slots 
classical; any ersats implementation is virtual. A 
particular instance of a virtual unit is a member 
of some virtual-unit type. We use the term shape 
as a shorthand for virtual-unit type, attempting to 
convey the mapping to the different arrangements of 
machine storage used to implement different virtual- 
unit types. In general, a programmer wants to define 
a shape, and then to create instances that have 
that shape. 

The goal of this work was to ease these limitations. 
Ideally, we would like to be able to treat any Lisp 
object as a unit, and to have the KEE system functions 
that manipulate units and slots deal with these new 
types of units. That is, we’d like a way to tell 

’ This being a consequence of the technology available at the 
time the KEE eyatem was originally built and the necessity of 
quickly developing a fast implementation. 

Now, if we really want units that behave just 
the way classical units do, we should have abandoned 
this project. The original designers of the KEE 
system did a good job of implementing the system 
core. The best way of achieving the full KEE system 
functionality with a reasonable time efficiency is to 
do it the way it was done. What we want from 
virtual units is a means of sacrificing functionality in 
return for improved time and/or space efficiency. For 
example, by decreeing that virtual units cannot be 
used to represent classes, we can build faster value 
storing functions- faster because they do not have to 
inherit values. By denying a particular shape user- 
settable facets, we can save storage. By declaring 

’ For example, a unit with a single parent and four local 
single-valued slots requires 135 Lisp cella in the KEE system 

’ For the reader unfamiliar with the KEE system terminol- 

version 2.1. This ia really only five cells of information. 
ogy, the Appendix is a glossary of the KEE system functions we 
mention in this paper. 
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that a shape has a specific set of slots, we can avoid 
dynamic slot allocation and search. Thus, we expect 
that most shapes will not have the full functionality 
of units-only the functionality important to the task 
they are to perform. Correspondingly, we are entitled 
to create shapes that behave differently than the 
classical shape-for example, a read-only unit that 
ignores calls to put .values, an unaccountable unit 
that does not record who modified it last, a logging 
unit that remembers everyone who accesses its slots, 
or an active database unit that responds to get. value 
calls by interrogating a database server. Thus, the 
same technology that enables our abbreviating or 
omitting functionality can be used to enhance or 
extend functionality. 

Having asserted that a unit is something that 
does unit-like things, we ought to overview what 
(some of) those things are. A unit is primarily a 
storage structure. It stores four kinds of information: 
slot values; slot facets; unit and slot properties; 
and miscellaneous unit information, such as the unit 
name, inheritance links, knowledge-base, and creation 
time. (We call this last class of information tags.) 
There are functions for creating, storing, retrieving, 
and deleting each kind of information; often the 
modification of one kind of information can affect 
another. [For example, updating a slot changes 
the modification date. Semantically, checking the 
value of a slot involves retrieving the values of the 
same slot from the unit’s parents (though clazsi- 
cal KEE optimizes this action by updating values 
in the children when a parent changes).] Units 
can be tested for equality, dynamically created and 
destroyed, and saved on and retrieved from long- 
term storage. Units can also be displayed using the 
KEE interface, created and modified by queries and 
assertions, and examined in the forward and backward 
chainera. Thus, units live in a rich soup-many 
utilities already know how to deal with units; we 
want alternative implementations to take advantage 
of these utilities. 

The remainder of this paper is devoted to de- 
scribing how to retrofit objects into Lisp systems. 
I describe both a technology of object retrofitting 
that is applicable in many programming domains and 
the specific implementation of that technology in the 
KEE system. I have implemented that technology 
in the form of a prototype virtual-units KEE system 
and have built a prototype demonstration system 
using that technology. (This demo shows a system 
of 3200 virtual units simulating Conway’s game of 
Life [3],) In this paper, references to the prototype 
and demonstration systems refer to these systems. 

2. The application and 
construction problems 

The above problem description demands, in essence, 
that we retro-fit object-oriented programming into 
the implementation of the core of the KEE system. 
The three primary elements of an object-oriented 
programming system are objects, messages, and han- 
dlers. Objects are the primitive program elements- 
the atoms of programming chemistry. The behavior 
of an object is induced by sending that object a 
message. Pragmatically, each behavior is implemented 
by running the appropriate handler (a program, or, 
in Lisp terms, a function) when an object receives 
a message. That is, message reception and function 
application are isomorphic. Thus, if the function 
get . handler(object, mag-type) determines the han- 
dler for object when sent a message of type msg-type, 
what an object-oriented programming system is really 
doing is 

apply(get . handler(object, 
message-type(messuge)), 

(object . arge(meaaage))). 

Thus, Sending a message is syntactic sugar for apply- 
ing a function. What an object-oriented programming 
system does is simplify specifying which function ought 
to be applied in a given situation. 

The task of building an object-oriented program- 
ming system has two primary subtasks. The first of 
these, the application subtask, involves arranging one’s 
system so that the above application actually takes 
place. That is, if H is the handler for message M on 
object 0, we want M messages to 0 to invoke H. 

The careful reader has noticed that object-oriented 
programming is not magic-it is not providing us with 
any computational power beyond our original mecha- 
nisms. We could build the function corresponding to 
the universal interpretation of message m as a giant 
series of if . . . then . . . else if . . . clauses. That is, if 
the object is in the class handled by handler hl, then 
apply )tr, otherwise if it is in the class handled by hl, 
and so forth. Object-oriented programming gives us a 
nicer ayntaz for saying these things. It is allowing us 
to define these handlers incrementally and textually 
local to the object class, not the message type (and, 
in implementation terms, may give us a more efficient 
indexing algorithm). Thus, the second subtask of the 
object-oriented programming system implementation 
task is building mechanisms to help the user construct 
and associate handlers with messages and objects. We 
call this the construction task. 
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So the task of implementing virtual units in to define 135 functions. These tend to be complicated 
the KEE system boils down to doing three things: functions, as they embody the full KEE system core 
(1) identifying the appropriate places to insert virtual functionality. On the other hand, while we don’t want 
units into the existing system, (2) changing the mech- to require the implementor of a shape to have to define 
anisms of the KEE system to recognize when we’ve 135 functions, we don’t want to preclude his having a 
got a virtual unit and apply the appropriate handler particular special implementation of, say, put. values. 
(the application task), and (3) building tools to help That is, we want to require the definition of as few 
the user develop virtual unit types (the construction functions as possible, but to allow the redefinition of 
task). I consider these in the next three sections. as many as desired. 

3. Inserting virtual units into 
the core 

One way to implement virtual units would be to 
reimplement the KEE system core, changing the 
unit accessing and modifying functions to recognise 
alternative unit implementations. Unfortunately, that 
approach has several drawbacks: (1) it runs the 
risk of dramatically slowing KEE, (2) it requires 
changing code in too many places, (3) it is a good 
way to infest the system with bugs, (4) it provides 
little positive guidance to the builder on to how to 
actually create a new kind of virtual unit, (5) it 
leaves unclear the semantic effect of changing parts 
of the underlying data structures, and (6) it requires 
recompiling the system to introduce another unit 
structure. These problems, particularly the fourth 
and sixth, imply that it was best to do this work 
on the ‘surface” of the KEE system’s core. Let 
us examine that layer, and other layers, in greater 
detail. 

Our resolution of this problem centers on selecting 
a core set of functions, the virtual layer. With these 
functions, we can implement the functions on the user 
layer (Figure 1). In the prototype system, this layer 
has 34 simple functions. Typical functions at the 
virtual layer include creating a slot in a unit, retrieving 
the local value of a slot, and storing a new local 
value. Thus, in addition to being smaller than the user 
layer, the functions in the virtual Iayer are typically 
semantically simpler. 

3.1. Layers 

The basic unit accessing and modifying functions form 
an architectural layer. The user-level functions (the 
135 functions in the KEE system manual that we 
alluded to earlier) also form a layer. In general, it is an 
established design principle to build systems in layers, 
with a well-defined interface between layers. For 
example, classical hardware architecture provides a 
microcode machine to the microcode writer, microcode 
to the machine instruction writer, machine instruc- 
tions to the compiler writer, and a programming 
language to the application writer. The virtual units 
project required identifying a layer in the software 
architecture of KEE, inserting at that layer the choice 
of the virtual alternative, and (for each shape) in- 
stantiating that layer. We call the 135 user-manual 
functions which are to respond to virtual units the 
user layer. 

We chose the functions in the virtual layer to allow 
the programmatic expression of the functionality of 
the user layer. For example, the user-layer function 
get .value can, independently of the implementa- 
tion of its operands, be defined a8 the car of the 
get .values on the same operands (preserving its 
original semantics). Similarly, the user-layer function 
add.value, parameterized (roughly) over unit, slot, 
and new. value, can be implemented as (1) creating 
slot if it does not already exist, (2) retrieving the 
datatype of clot, (3) coercing the new value accord- 
ing to the datatype, (4) retrieving the old local 
values of slot, aa (5) if new .value’ is not one 
of them, storing the addition of new.value to old 
local values in slot, (6) retrieving the values of 
the parents of slot, (7) retrieving the inheritance 
role of slot, (8) combining the new values with 
the parent values, (9) installing the result a8 the 
derived value of slot, (10) determining the appropri- 
ate active values, and (11) running them. Each of 
these steps is a programmatic combination of virtual- 
layer elements. The key point is that the user-layer 
functions can be (programmatically) built from the 
virtual layer. 

4. The application task 

Unfortunately, the user layer is too big. We do 
not want to require an implementor of a shape to have 

Functions become sensitive to virtual units by being 
uadvised” to check their arguments before executing 
their normal behavior. Advising a function is redefin- 
ing it by wrapping additional code around the original 
definition of the function. This works in the Lisp 
environment because calls to function F are routed 
through the function cell of F. (We could perform 
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put.facet.valuQ 

The virtual layer 

unit.putprop 

store.value 

unit.comment 

Plgure 1: The virtual and user layers 

the same trick in compilation-based environments if we 
had access to the source code and convenient systems 
for automatically parsing and modifying it.) In our 
implementation, this advice is generated automatically 
when the user specifies that a particular function is to 
be sensitive to virtual units. 

The application process requires discovering the 
appropriate handler for a message and then invoking 
that handler. If we are to find the right handler for 
something, we need some characteristic that distin- 
guishes the different classes of things. These are the 
shapes. Each virtual unit (that is, anything that is 
to be treated as a unit) must belong to a shape. It 
must be possible to determine (constructively) the 
shape of a given virtual unit. That is, we need 
a function that, given a candidate unit, returns its 
shape if it is a virtual unit (and nil if it is not). 
To obtain adequate system performance, this function 
must be fast. For example, a typical use of virtual 
units might include only shapes that are user data 
types. In many Lisp systems, the data type of an 
object is easy to determine and is represented by some 
symbol. An object whose data type symbol has a 
particular property could then be recognized as an 
element of that shape; the value of that property 
could be an index of handlers. Alternatively, we could 

restrict virtual unite 

I slot.role 

to array-shapes (like Flavors), _ _ 
keeping the handler table in the first element of the 
array. 

When an advised function is called with a virtual 
unit, it should obtain from that unit’s shape the 
handler for that function. The handler is the definition 
of that function for that type of unit. We run 
that handler on the virtual unit and the remaining 
arguments. That is, to invoke the function (f u . . .) 
on the virtual unit u, we want to: 

(apply* (lookup (shape u) f) u . . .) 

This expression is, of course, isomorphic with the ex- 
pression that defines an object-oriented programming 
system. We call the result of shape a representation 
structure. 

In the prototype implementation, we have two 
different types of objects as possible values of function 
shape: classical KEE units and hash arrays. In the 
first case, lookup does a get. value with f as its slot; 
in the second, lookup does a gethash. 

The following code summarizes the change in the 
behavior of advised functions. To sensitize a function 
(f u a b c . . .) to its first argument? u, as a virtual 
unit, we redefine it as 
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ModlIld by ?Ilman on 6-26-07 15:41;39 

own r1oc AmIAcEl.VuuE horn fEF.aoor 
Inkritmcu: MEtnoD 
VaIucClarr: FINCTKIN 
V&U: RCW/ADD.VA~.Vltvt 

own sbc Am.vALle from nF.PnoDt 
lnhuimtcr:YTttm 
ValwClarr: FUNCTION 
varwa: RooTlAm.vNuL 

Own sloe Am.vMuEs horn RopaDDT 
Jnkritancu: YETnm 
VakClaw FUIWTUW 
Valusr: ROOTJADDNALUU 

Figure 2: Unit display of part of REP. PROPL 

(if (classical .unitp u) 
then (f’ u a b c . ..) 
elee 

(let ((u’ (or (unitref erence* u) u))) 
(if (classical .uuitp u’) 
then (f’ u’ a b c . . .) 
else 

(let ((vrep (shape u’))) 
(if vrep 
then 

(let ((handler 
(lookup vrep f))) 

(if handler 
then 

(apply* handler u’ 
a b c . ..) 

else 
(error Yh&uown handler”)) ) 

else (f’ u a b c . ..)))))) 

where classical.unitp tests if a unit is a classical 
unit, and f’ is the original definition of f. That is, 
first we check to see if we’ve been given a classical 
unit data type. If so, we execute the original definition 
of the function. Next we consider if we’ve been 

given the name of a unit. We search for a unit by 
that name; if we find a non-classical instance, we 
apply the handler of that unit’s shape and function 
to the appropriate arguments. Otherwise, we execute 
the original function. (This particular definition 
is skewed towards minimising interference with the 
classical KEE system-we check twice for classical 
representations before considering virtual alternatives. 
In a system dominated by virtual units, the Srst of 
these checks could be eliminated. Also note that, 
in contrast to most other systems, this definition is 
complicated by KEE provision of both pointers to unit 
structures and separate unit names, either of which 
Can be used to reference a unit.) 

In practice, we have defined a series of functions 
that add the appropriate advice to KEE system 
core functions. Different functions are used for core 
functions over one, two and three %nit” arguments, 
and for core functions that reference slots. Variants 
and parameterisations of these functions allow for 
different orders of parameters, alternative handlers, 
and for the computation of fix-up functions after 
calling an alternative handler (for example, redefining 
get .value to be (car get .valuee)). These tech- 
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unit.putprop 

unit.commant 

Figure 3: Spaghetti between layem 

niques fail when the underlying functions exhibit too 
much syntactic variation or are themselves macros for 
compiler optimization. In the KEE system, about a 
dosen functions need individual treatment, such as the 
functions for returning a unit or slot from unit and slot 
names and the functions for creating a unit (as there 
is no virtual unit object on which to index before the 
creation). 

5. The construction task 

For the purposes of ease of program development, 
automatic inheritance and method combination, we 
choose to represent collections of handlers as units. 
The idea is that the representation structure of any 
shape is a unit. Each advised function is the name of 
an own slot in that unit; the handler for that advised 
function is the value of that slot. Figure 2 shows 
the Crst part of the unit display of the representation 
structure unit REP. PROPL for the shape PROPL units. 
The actual unit has about 180 slots. (PROPL units 
store their data in Uproperty-list format,” and are 
uninteresting except for their complete functionality. 
The additional facets in the unit display are directives 
to the automatic advice mechanism.) Thus, doing an 
add. child on a unit of shape PROPL retrieves the 

function root/add. child from the add. child slot of 
REP.PROPL and applies that function to the original 
arguments. 

The advantage of representing representation 
structures as KEE system units is that we can use 
method inheritance to obtain default values for han- 
dlers. (As discussed below, we can also use method 
combination to assemble handlers from components.) 
We provide default implementations of the user-layer 
functions in terms of the virtual-layer functions. We 
call the implementation of a higher-layer function in 
terms of a lower-layer ones spaghetti, as higher-layer 
functions take a twisting and tangled path down to 
the lower-layer functions (Figure 9). The implementor 
of a shape who wishes a specialised version of a user- 
layer function can defeat this default. Using the KEE 
system’s standard inheritance mechanisma (typically 
method inheritance for functions) we obtain both 
default behaviors and the ability to override defaults. 

For each advised function, the implementor of a 
shape can (1) inherit the default action, (2) specify a 
particular action, or (3) simply leave the action empty. 
That is, we have virtual units because we do not 
need all the functionality of classical units; one way of 
simplifying functionality is to omit functionality. For 
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Figure 4: The REP.STRUCTURES knowledge base 

example, we expect that shape implementors will often 
create shapes that lack unit names, are not known 
to their knowledge base or parents, not writable to 
permanent storage, lack facets, or do not coerce values 
before putting them in slots. 

Figure 4 shows the REPSTRUCTURES knowledge 
base from the prototype demonstration system. Solid 
lines indicate subclass relations; dashed, set member- 
ship. It has representation structures for four shapes: 
REP .PROPL, REP. IMAGE, REP. CELL and REP. ACTOR. 
REP .PROPL units are four-element lists: a special sym- 
bol (SSSPropLSSS), and lists of slots, tags, and prop 
erties, each stored as a property list. REP.IMAGE and 
REP. CELL are compact record-structured representa- 
tions of units with known slot structures. These repre- 
sentations were generated by calling a representation- 
structure generating function; some of the handlers 
were then improved by substituting optimised func- 
tions in particular slots. REP. ACTOR units are storage 
for simple active values (demons). They take up five 
cells, have room for each of the four KEE 2.1 system 
active-value slots, and have only the minimal handlers 
to establish values and invoke demons. 

At the top of the REPSTRUCTURES knowl- 
edge base are the class units RRP.PRIMS, REP.ROOT 
and REP. AUX. Unit REP. PRIMS has member slots for 
each function on the virtual layer; REP #ROOT, each 
function on the user layer. Thus, there are 34 slots 
in REP -PRIMS and 135 in RRP . ROOT. Unit REP. AUX 
contains about a dozen Uauxiliary” functions that 
express recurring concepts in the space between the 
user layer and the virtual layer-for example, the 
concept of the “active value units interested in this 
slot.” In general, the default values in REP. ROOT are 
programmatic combinations of the functions in these 
three units. That is, functions such as get, values 
and put. facet .value are expressed in terms of the 

available primitives. The default values in REP. PRIMS 
are empty-these are the foundation on which other 
data types are built; we can say little about them 
a priori. (Slots in RRP.AUX are like REP.ROOT; they 
differ in that they are functionality needed by shape 
builders, not KEE system users.) 

We expect that, except for specialized shapes, all 
shapes would be children of these three. Thus, units 
such as REP .PROPL have slots for each virtual-layer 
function, each primitive function, and each auxiliary 
function. The values of the virtual-layer and auxiliary 
functions are typically inherited, while the primitive 
functions are more locally defined. 

The middle of the unit structure of the knowledge 
base is dominated by units such as REP .PULL and 
REP. TAGS. The idea here is that certain implement* 
tion decisions imply that a class of virtual functions 
can support related handlers. FOF example, REP. PULL 
embodies the idea of “pull inheritance,” described 
below. It defines handlers for intermediate value stor- 
age and retrieval functions such as retrieve .data, 
retrieve.facet.data, and store.data. REP.TAGS 
compresses the idea of additional information (the 
tags) being stored and retrieved through one uniform 
mechanism. That is, the developer of a shape provides 
primitives for storing and retrieving a (tag, value) 
pair, and the tags structure defines functions such as 
unit. comment as retrieving the (comment, z) value. 

5.1. Programming with components 

The units REP. COERCERS, REP. TELLPROPPARENTS, 
REP. TELLPARRNTS, and the subclasses of REP. REGNAMS 
and REP. RECORDSPROPHANDLERS store information for 
component programming. The idea here is.similar to 
that available with mixins in the flavors packages of 
Zeta-lisp 121. Often, functionality can be expressed 
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S: (Wrapper (W l )) 

Figure 5: Method inheritance: (U (progn (B) (progl (P) (A)))) 

as a collection of actions to be taken (grains). For 
example, creating a unit with name z involves not 
only allocating the storage for that unit, but also 
interning z in the system’s oblist mechanism and 
informing the current knowledge base of the new unit 
(registering it). These last two are independent of the 
shape of the newly created unit, and independent of 
each other. The creator of a particular shape might 
not want the conventional interning and registration 
actions. That is, units in a particular shape might not 
have names, or might always be put in a particular 
knowledge base independent of the current knowledge 
base. Nevertheless, the naming and registering activi- 
ties need to be coordinated over different functions- 
the action taken on creating a unit implies particular 
corresponding actions on transferring that unit to a 
different knowledge base, arid renaming, copying, or 
deleting it. 

The method inheritance mechanism in the KEE 
system allows us to take advantage of the natural 
grain of programs. This mechanism allows the user 
to specify m&ins, ubefore,” “after,” and “wrapper” 
actions to be combined with a major functionality. 
Figure 5 shows a unit hierarchy with the local values 
for several units for slot a. This slot inherits with 
method inheritance. The derived value of this slot is 
W (progn 03) (progl (P) (A)))). 

Some activities can be divided into grains, and 
some of these grains have alternative behaviors for dif- 
ferent shapes. We can take advantage of this graininess 

in the structure of our representation knowledge base. 
In particular, we implement the related alternatives 
as mixins on slots of representation units. Any shape 
that is to have such behavior can simply be made a, 
member of such a class unit. For example, in the RIP- 
STRUCTURES knowledge base, units of shape REP. PROPL 

are installed on their parent’s list of children, coerce 
new values, and registered and named by making 
REP .PROPL a member of the classes REP. TELLPARENTS, 

REP .COERCERS, and RIP. REGBNAMED. If we did not 
want REP .PROPL units to coerce their values, we would 
simply omit the link to REP. COERCERS. 

5.2. Automatic generation of shapes 

The unit REP. RECORDS represents a schema of shapes. 
Units of this form are a record structure with a prede- 
fined set of slots. We have a function, MAKE. VIRTREC, 

paranieterized by attributes such as (1) the name 
of the new shape, (2) the names and valueclasses 
(type constraints for valid values) of the particular 
slots of this shape, (3) default classes and prototypes 
for newly created units, (4) whether additional slots, 
facets, or unit or slot properties are to be allowed, 
and (5) whether units of this shape are to coerce 
their values, inform their parents, be stored in their 
parents, and/or inform their knowledge base. Ex- 
ecution of MAKE.VIRTREC creates a shape (and its 
associated unit) of the given name and with the 

specified properties. In the demonstration knowledge 
base, REP. CELL and REP. IMAGE are precisely this kind 
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of representation. Component functions, such as 
value coercion and naming, are achieved by making 
(or failing to make) the newly created representation 
structure a child of the appropriate component unit. 
MAKE.VIRTREC writes functions specific to other parts 
of the parameterisation for the primitives required 
for that particular shape; the other primitives and 
composite functions are inherited from REP. RECORDS. 
F’or example, if we create a record-structure shape with 
fields A, B, and C, MAKE. VIRTRBC defines field-accessing 
and field-storing functions for that shape that include 
case statements over the names A, B, and C. 

6. Run-time considerations 

6.1. Untangling the spaghetti 

The spaghetti mechanism (defining high-layer func- 
tions in terms of combinations of lower-level ones) 
in many ways reflects standard programming prac- 
tice. However, the virtual unit technique requires re- 
deriving the shape of a particular unit and searching 
for its handler repeatedly through the spaghetti tangle. 
This re-derivation and search can, in many cases, be 
compiled-out. That is, we can (and have) automat- 
ically transformed the handlers of particular shapes 
into macros that recognize that their unit is of the 
given shape and compile precisely the required routine. 

6.2. Development and execution 
environment 8 

This section has described a development environ- 
ment for building virtual units. At run-time, it 
is only important that the values of the handlers 
be present, not the structures used to build them. 
Thus, the RBPSTRUCTURES knowledge base is not 
needed at execution-time--only a structure to map 
between the external function name (‘get. values”) 
and the handler for that function for a particular shape 
(‘propl/get . values”). While this structure can be a 
unit, we have also implemented it as a hash table and 
as a record of pre-defined field names. 

7. Limitations of this approach 

This approach has several limitations. Some of these 
are caused by our desire not to completely imitate the 
functionality of classical KEE. The most prominent is 
the timing of inheritance. The KEE system modifies 
the children of a unit when a member slot is changed. 
We call this pwh inheritance, because values are 
“pushed” from parents to children. Thus, when the 

value in a parent changes, demons attached to the 
children can awake and make their effects visible. In 
a large, virtual-unit-based system, we can expect that 
most classes will not have an explicit list of their 
children. This may be because: (1) there are too many 
children to list, (2) the children exist only implicitly 
in some database or on permanent storage, (3) the 
children form an infinite set (e.g., ‘the integers”), 
(4) the children exist only implicitly as the result 
of some computation, and (5) for garbage collection, 
storage space, or security reasons, extra pointers to the 
virtual units are inappropriate. Obviously, one cannot 
do push inheritance to unknown children. Instead, any 
inheritance of values to such units must take place at 
access time. We call such inheritance pull inheritance. 
Ordinarily, the time of inheritance would be invisible 
to a user-the most straightforward (i.e., side-effect 
free) semantic definition of inheritance cannot distin- 
guish between systems implemented with push and 
pull inheritance. However, the KEE system’s active 
value mechanism makes the internal workings explicit. 
By appropriately using (or misusing) active values, a 
user can obtain a great deal of information about the 
ordering of the KEE system’s internal operations. 

Who points to a unit ? The KEE system keeps 
a pointer to a unit on the property list of its name 
(the KEE system’s implementation of an oblist), in 
the unit entities, in its parents and children, in the 
unit’s knowledge base, in the value part of anything 
it is a value of, and on the property list of some 
of its slotnames (for pattern-directed queries). The 
implementor of a shape can choose which of these to 
perpetuate. In particular, it may prove worthwhile to 
reixnplement the search mechanism for those slots for 
which linear search is inappropriate. 

The virtual unit system described above, where 
higher layers are implemented in terms of lower ones, 
suffers in that the system repeatedly determines the 
shape of a unit as it unravels the spaghetti. This 
can be alleviated by (1) compiling-out the lookups, 
and (2) restructuring the KEE system to reduce the 
type-dependent distance between the user layer and 
the virtual layer. That is, if the system definition of 
get -value is (car get .valuee), there is no cycling 
penalty for using get .value. 

In the prototype virtual unit implementation, 
I made several assumptions that serve as a priori 
limitations on the functionality of virtual units. I 
assumed that (1) virtual units cannot be classes (they 
cannot have subclasses or members, or member slots), 
(2) virtual unit slots are multiple-valued, (3) active 
values are not necessarily run at the same time and 
in the same order as classical units, and (4) slots are 

October 4-8,1987 OOPSLA ‘87 Proceedings 351 



not unique data structures. These assumptions are 
not inherent in the virtual unit mechanism, but were 
chosen for expediency. 

9. Status of the Implementation 

8. Advantages of this approach 

Having listed our faults, we are entitled to mention a 
few of our virtues. Of course, there are clearly many 
performance advantages in having virtual units. In 
this section, we are concerned with the advantages that 
this approach provides, in contrast with other possible 
implementation alternatives. 

As part of our research, we have built a prototype 
implementation of virtual units. This prototype 
includes the full user-layer functionality. We imple- 
mented several shapes, and created a function that 
generates shapes automatically. IntelliCorp’s Product 
Development and Engineering Department has taken 
many of these ideas and incorporated them in the 
internals of the latest release of the KEE system, 
KEE 3.0. 

1. Class # shape. We have separated the semantic 
class of objects from their implementation type. 
We do not have to implement all the instance units 
of a particular class in a particular format, or to 
assume that all units of a particular format belong 
to a particular class. Traditional implementations 
of objects (for example, [4]) confuse the semantic 
basis of an object with its implementation. (Of 
course, it takes having a rich, pre-existing seman- 
tic environment like a knowledge representation 
system before one even has much of a semantic 
basis available). We allow a given virtual unit 
to be in several classes, and to change classes 
dynamically. 

10. Comparison with other 
work 

2. Building a shape is not wizardry. We make 
it clear what the implementor of a shape must 
provide, and give him an explicit (and visible) 
place to put it. The operations tie directly to 
the semantics of the KEE system; no knowledge 
of magic flags or bits are required (though an 
implementor can include her own set of magic 
flags). Build’ g m a shape is straightforward enough 
that it can be done programmatically. 

Traditionally, if one wants to do object-oriented pro- 
gramming, one programs in an object-oriented system. 
One does not build one up around oneself. The 
other interesting exception to this rule is the Portable 
Common LOOPS system from Xerox [5]. That sys- 
tem also takes advantage of functional redefinition to 
implement objects in an existing (Lisp) environment. 
Common LOOPS provides the ability to sensitize any 
function to shapes of different units on several argu- 
ments. This implies that they have developed a more 
sophisticated set of program-modification functions 
than has been required to insert virtual units in the 
KEE system. 

11. Summary 

3. Implementation can be inserted at any 
layer. Since the virtual handler is consulted for all 
advised functions, the implementor can insert an 
optimized version of any advised function for any 
shape. He can also advise (almost) any function. 
However, because of the lookup step in the virtual 
advice, we cannot optimize any operation to be 
faster than a symbol to value translation (typi- 
cally gethash, classical get. value, or getprop), 
though this translation may be possible, in many 
cases, at compile time. 

While we have described the virtual units project in 
terms of changing the KEE system, the techniques 
involved are applicable on a much wider scale. The 
moral is that if one is in an environment where the 
definitions of procedures can be programmatically 
varied, it is possible to build a set of tools that al- 
low object-oriented programming-even in an already 
constructed system. If the semantics of that system 
allow programmatic expression in terms of a simpler, 
lower layer, then the object retro-fitting can be much 
more straightforward. And if one can recognize the 
underlying conceptual grains, the object retro-fitting 
can combine these grains as appropriate. 
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Appendix: Glossary of KEE system functions 

Table 1 describes the KEE system functions mentioned in this paper. 

Function (arguments) Description 

add. child Makes unit a member or subclass of parent, depending on the 
(unit, parent, link-type) value of link-type. 

add. value Adds new .value to the set of values of elot of unit. 
(unit, alot, new. value) 

get.valuee (unit, slot) Returns (as a list) the set of values of elot of unit. 

get-value (unit, slot) Returns one of the memberz of the sef of values of that slot. 

put.iralues Changes the values of elot of unit to be new .valuee. 
(unit, elot , new .valuee) 

put.facet.values Changes the values in facet of slot of unit to be new .valuee. 
(unit, Blot, facet, new.valuee) 

unitreference (name, kb) Looks for and returns the unit of name name in knowledge base 
kb. 

unit. comment (unit > Returns the comment (text description) for unit. 

Table 1. Representive KEE system function8 
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